Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mol Genet Metab ; 131(3): 325-340, 2020 11.
Article En | MEDLINE | ID: mdl-33069577

Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.


Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brain/metabolism , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/pathology , Brain Diseases, Metabolic/diet therapy , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/metabolism , Carnitine/metabolism , Child , Child, Preschool , Corpus Striatum/pathology , Diet , Female , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Infant , Infant, Newborn , Lysine/metabolism , Male
3.
Hum Mol Genet ; 28(4): 525-538, 2019 02 15.
Article En | MEDLINE | ID: mdl-30304524

Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.


Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Loss of Function Mutation/genetics , Tyrosine-tRNA Ligase/genetics , Adult , Catalytic Domain/genetics , Child, Preschool , Female , Genetic Diseases, Inborn/physiopathology , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation , Pedigree , Phenotype , Severity of Illness Index , Exome Sequencing , Yeasts/genetics
...